

Model Curriculum

NOS Name: Fundamentals of Low Cost Automation in Manufacturing Process

NOS Code: ASC/N6464

NOS Version: 1.0

NSQF Level: 5.5

Model Curriculum Version: 1.0

Automotive Skills Development Council | E 113, Okhla Industrial Area, Phase – III, New Delhi – 110020

Table of Contents

- A. Training Parameters
- B. Program Overview
- C. Training Outcomes
- D. Compulsory Modules
 - E.
- **Trainer Requirements**
- E. Assessor Requirements
- F. Assessment Strategies
- G. Reference
- Glossary
- Abbreviations & Acronyms

Training Parameters

Sector	Automotive
Sub-Sector	Manufacturing
Occupation	Production Engineering
Country	India
NSQF Level	5.5
Aligned to NCO/ISCO/ISIC Code	NCO-2015/2144.0801
Minimum Educational Qualification and Experience	UG Diploma in relevant field with 1.5 Years of Relevant experience OR 3 rd year of UG Degree in relevant field OR Diploma after 10th in relevant field with 3 Years of Relevant experience
Pre-Requisite License or Training	NA
Minimum Job Entry Age	18 Years

2 | Fundamentals of Low Cost Automation in Manufacturing Process

Next Review Date	15/03/2027
NSQC Approval Date	15/03/2024
QP Version	1.0
Model Curriculum Creation Date	15/03/2024
Model Curriculum Valid Up to Date	15/03/2027
Model Curriculum Version	1.0
Minimum Duration of the Course	60 Hours
Maximum Duration of the Course	60 Hours

Program Overview

This section summarizes the end objectives of the program along with its duration.

Training Outcomes:

At the end of the program, the learner should have acquired the listed knowledge and skills.

- Principles of low-cost automation, including the use of low-cost sensors, actuators, and controllers, as well as the importance of modularity and standardization.
- Methods to design low-cost automation elements using CAD software, as well as how to select appropriate materials and components based on cost and performance requirements.
- Integrate low-cost automation elements into the automotive manufacturing process, including how to connect them to existing systems and how to ensure compatibility with other automation elements.
- Test & validate low-cost automation elements for functionality, reliability, and safety, as well as how to troubleshoot any issues that arise during testing.

• Optimize the cost of low-cost automation elements by selecting appropriate components, minimizing waste, and maximizing efficiency.

Sub-NOS Details	Theory Duration	Practical Duration	On-the-Job Training Duration	Total Duration
-----------------	--------------------	-----------------------	------------------------------------	----------------

ASC/N6464- Fundamentals of Low Cost Automation in Manufacturing Process NSQF Level- 5.5	15:00	45:00	00:00	60:00
Module: 1- Introduction Fundamentals of Low Cost Automation in Manufacturing Process, Mapped to ASC/N6464	05:00			05:00
Module: 2- Fundamentals of Low Cost Automation in Manufacturing Process, Mapped to ASC/N6464	10:00	45:00		55:00
Total Duration	15:00	45:00	00:00	60:00

Module Details

Bridge Module-1 Introduction to Fundamentals of Low Cost Automation in Manufacturing Process,

Mapped to ASC/N6464

Terminal Outcomes:

- Interpret the principles of low-cost automation, including the use of low-cost sensors, actuators, and controllers, as well as the importance of modularity and standardization.
- Investigate about various applications of low-cost automation in the automotive manufacturing process, such as assembly line robots, material handling systems, and quality control machines.

Duration: <5:00>	Duration: <0:00>
Theory – Key Learning Outcomes	Practical – Key Learning Outcomes
 Concept of low-cost automation and its importance in modern manufacturing and production processes. Different types of low-cost automation technologies, such as pneumatic, electric, and hydraulic systems. Benefits and limitations of low-cost automation, such as reduced costs, improved efficiency, and lower maintenance requirements. 	
Classroom Aids:	
Whiteboard, marker pen, projector	
Tools, Equipment and Other Requirements	
Case Study Documents on Low-Cost Automation, Indus	strial Sensors, Robots, PLC Controllers, Motor
Conveyors.	

Module: 2 Fundamentals of Low Cost Automation in Manufacturing Process,

Mapped to ASC/N6464

Terminal Outcomes:

• Participants will develop skills in designing and integrating low-cost automation elements into automotive manufacturing processes.

• Participants will acquire programming skills for the control and operation of automated systems, emphasizing cost-effective programming approaches.

Duration: <10:00>	Duration: <45:00>
Theory – Key Learning Outcomes	Practical – Key Learning Outcomes
 Design principles of low-cost 	Hands-On Design Projects:
automation systems, including modularity,	,
flexibility, and scalability.	Successfully design low-cost automation
 Techniques for analyzing the cost- 	elements for specific tasks in automotive
effectiveness of automation solutions,	manufacturing through hands-on projects,
including initial investment, operating costs,	considering factors like task complexity,
and long-term benefits.	efficiency, and cost-effectiveness.
 Interdisciplinary nature of integrating 	
automation elements, including the	Simulation and Modeling:
integration of mechanical, electrical, and	
software components.	Use simulation tools to model and simulate
	the behavior of automated systems, allowing
 Fundamental principles and theories 	participants to test and validate their designs
underlying automation, including the concept	before actual implementation.
of feedback control, sensors, actuators, and	
system dynamics.	Prototyping:
 Types of sensors and actuators used in submetrice manufacturing and understand 	Develop prototypes of extension eveteries
their principles of operation and applications	integrating components such as conserve
in automation	actuators and controllers to domonstrate the
	actuators, and controllers to demonstrate the
	practical reasibility of the designed solutions.
	Team Projects:
	Work collaboratively in teams to design,
	implement, and optimize automation
	solutions, fostering effective communication
	and teamwork skills.
	Stakeholder Engagement:

with stakeholders, including Engage production and teams, engineers, management, to understand their requirements and incorporate practical feedback into the automation design process.

Classroom Aids:

•

Whiteboard, marker pen, projector

Tools, Equipment and Other Requirements

Industrial Sensors, Controllers, Design Software, Simulation Software, Actuators, E-Plan.

Annexure

Trainer Requirements

Trainer Prerequisites						
Minimum Educatio nal	Specialization	Relevant Industry Experience		Train	Remark s	
Qualifica tion		Yea rs	Specialization	Year s	Specialization	
B.E/B.Tech	Mechanical/Automobile /Mechatronics/Electronics/ Electrical/Manufacturing	3	Mechanical/Automobile /Mechatronics/Electronic s/Electrical/Manufacturi ng	1	Mechanical/Automobile /Mechatronics/Electronics/Ele ctrical/Manufacturing	NA
B.E/B.Tech	Mechanical/Automobile /Mechatronics/Electronics/ Electrical/Manufacturing	4	Mechanical/Automobile /Mechatronics/Electronic s/Electrical/Manufacturi ng	0	Mechanical/Automobile /Mechatronics/Electronics/Ele ctrical/Manufacturing	NA
Diploma	Mechanical/Automobile /Mechatronics/Electronics/ Electrical/Manufacturing	5	Mechanical/Automobile /Mechatronics/Electronic s/Electrical/Manufacturi ng	1	Mechanical/Automobile /Mechatronics/Electronics/Ele ctrical/Manufacturing	NA
Diploma	Mechanical/Automobile /Mechatronics/Electronics/ Electrical/Manufacturing	6	Mechanical/Automobile /Mechatronics/Electronic s/Electrical/Manufacturi ng	0	Mechanical/Automobile /Mechatronics/Electronics/Ele ctrical/Manufacturing	NA

Trainer Certification				
Domain Certification	Platform Certification			
" Fundamentals of Low Cost Automation in Manufacturing Process", ASC/N6464, minimum accepted score is 80%	"Recommended that the trainer is certified for the job role "Trainer (VET and Skills)", Mapped to Qualification Pack: MEP/Q2601, V2.0" Minimum accepted score is 80%."			

Assessor Requirements

	Trainer Prerequisites					
Minimum Education	Specialization	Relevant Industry Experience		Training Experience		Remark s
Qualificati on		Yea rs	Specialization	Year s	Specialization	
B.E/B.Tech	Mechanical/Automobile/Me chatronics/Electronics/Elect rical/Manufacturing	3	Mechanical/Automobile/Mechat ronics/Electronics/Electrical/Ma nufacturing	1	Mechanical/Automobile/M echatronics/Electronics/El ectrical/Manufacturing	NA
B.E/B.Tech	Mechanical/Automobile/Me chatronics/Electronics/Elect rical/Manufacturing	4	Mechanical/Automobile/Mechat ronics/Electronics/Electrical/Ma nufacturing	0	Mechanical/Automobile/M echatronics/Electronics/El ectrical/Manufacturing	NA
Diploma	Mechanical/Automobile/Me chatronics/Electronics/Elect rical/Manufacturing	5	Mechanical/Automobile/Mechat ronics/Electronics/Electrical/Ma nufacturing	1	Mechanical/Automobile/M echatronics/Electronics/El ectrical/Manufacturing	NA
Diploma	Mechanical/Automobile/Me chatronics/Electronics/Elect rical/Manufacturing	6	Mechanical/Automobile/Mechat ronics/Electronics/Electrical/Ma nufacturing	0	Mechanical/Automobile/M echatronics/Electronics/El ectrical/Manufacturing	NA

Assessor Certification				
Domain Certification	Platform Certification			
" Fundamentals of Low Cost Automation in Manufacturing Process", ASC/N6464, minimum accepted score is 80%	Recommended that the Accessor is certified for the job role "Assessor (VET and Skills)", Mapped to Qualification Pack: MEP/Q2701, V2.0" Minimum accepted score is 80%.			

Assessment Strategy

- 1. Assessment System Overview:
- Batches assigned to the assessment agencies for conducting the assessment on SDMS/SIP or email
- Assessment agencies send the assessment confirmation to VTP/TC looping SSC
- Assessment agency deploys the ToA certified Assessor for executing the assessment
- SSC monitors the assessment process & records
- 2. Testing Environment:
- Confirm that the centre is available at the same address as mentioned on SDMS or SIP
- Check the duration of the training.
- Check the Assessment Start and End time to be as 10 a.m. and 5 p.m.
- If the batch size is more than 30, then there should be 2 Assessors.
- Check that the allotted time to the candidates to complete Theory & Practical Assessment is correct.
- Check the mode of assessment—Online (TAB/Computer) or Offline (OMR/PP).
- Confirm the number of TABs on the ground is correct to execute the Assessment smoothly.
- Check the availability of the Lab Equipment for the particular Job Role.
- 3. Assessment Quality Assurance levels / Framework:
- Question papers created by the Subject Matter Experts (SME)
- Question papers created by the SME verified by the other subject Matter Experts
- Questions are mapped with Semester-wise Curriculum.
- Question papers are prepared considering that level 1 to 3 are for the unskilled & semi-

skilled individuals, and level 4 and above are for the skilled, supervisor & higher management

- Assessor must be ToA certified & trainer must be ToT Certified
- Assessment agency must follow the assessment guidelines to conduct the assessment
- 4. Types of evidence or evidence-gathering protocol:
- Time-stamped & geotagged reporting of the assessor from assessment location
- Centre photographs with signboards and scheme specific branding
- Biometric or manual attendance sheet (stamped by TP) of the trainees during the training

period

- Time-stamped & geotagged assessment (Theory + Viva + Practical) photographs & videos
- 5. Method of verification or validation:
- Surprise visit to the assessment location
- Random audit of the batch
- Random audit of any candidate
- 6. Method for assessment documentation, archiving, and access
- Hard copies of the documents are stored
- Soft copies of the documents & photographs of the assessment are uploaded / accessed from Cloud Storage
- Soft copies of the documents & photographs of the assessment are stored in the Hard Drives

References

Glossary

Term	Description
Declarative Knowledge	Declarative knowledge refers to facts, concepts and principles that need to be known and/or understood in order to accomplish a task or to solve a problem.
Key Learning Outcome	Key learning outcome is the statement of what a learner needs to know, understand and be able to do in order to achieve the terminal outcomes. A set of key learning outcomes will make up the training outcomes. Training outcome is specified in terms of knowledge, understanding (theory) and skills (practical application).
OJT	On-the-job training (Mandatory); trainees are mandated to complete specified hours of training on site
Procedural Knowledge	Procedural knowledge addresses how to do something, or how to perform a task. It is the ability to work, or produce a tangible work output by applying cognitive, affective or psychomotor skills.
Training Outcome	Training outcome is a statement of what a learner will know, understand and be able to do upon the completion of the training.
Terminal Outcome	Terminal outcome is a statement of what a learner will know, understand and be able to do upon the completion of a module. A set of terminal outcomes help to achieve the training outcome.

Acronyms and Abbreviations

NOS	National Occupational Standard(s)
NSQF	National Skills Qualifications Framework
QP	Qualifications Pack
TVET	Technical and Vocational Education and Training
PLC	Programmable Logic Controller
нмі	Human Machine Interface